Beach Hazards on the Great Lakes

Megan Dodson National Weather Service Marquette, MI

Today's Goals

- Through examining past current-related incidents, leave with a knowledge of:
 - The most problematic current-related hazards on the Great Lakes
 - What conditions lead to the formation of high waves and dangerous currents
 - Where dangerous currents typically develop, and present recommended escape methods
- First: Information on the database used for the statistics used in this presentation

The Great Lakes Current Incident Database (GLCID)

- A record of current-related rescues and fatalities across the Great Lakes 2002-2012
- Started by Dave Guenther [NWS Marquette] after the drowning of Travis Brown in the late 90's
- Items Collected in the database:
 - Victim information
 - Wind and wave data from nearest observation site and eyewitnesses
 - Current-type or location recorded: Channel currents, Structural currents, rip currents (classic and outlet)

Limitations of the GLCID

- Subject to media coverage of incidents
 - Mislabeling incidents as rip currents (sensationalizing)
 - Not covering rescue incidents thoroughly or accurately
- Observations are limited in the nearshore environment
 - Observations may be unrepresentative of true environment
 - EX) Thunderstorm activity
- Remember: current related=currents may have only been a partial cause (likely a combination of waves and currents for many cases)

An Overview of Great Lakes Current Related Incidents

What we've gathered from the database

Total # incidents: 413
Total # rip current fatalities: 120
Total # rip current rescues: 279

2002-2012 average: 11 rip fatalities/yr 2002-2012 average: <1 channel fatality/yr

Total Channel Current and Rip Current Incidents - 2002-2012

Popularity: Lots of People

High Waves & Dangerous Currents

The reasoning behind so many drowning fatalities and rescues

High Wave Action

- Most Problematic
 Hazard on the Great
 Lakes
- Largely ignored by the media-esp. when a current mentioned
- Equal cause of most incidents as currents!
- GL Waves are different from the Ocean

Waves

Key ingredients to building wave heights

- Wind Speed
- Wind Fetch Length
- Wind Duration
- Stability

- Ocean Waves=long periods, swell (>9 seconds)
- <u>Lake MI Waves</u>= short periods, wind waves (<9 seconds

High Wave Action

o-2 ft 3-4 ft 5-6 ft 7-8 ft >8 ft Missing

Wave Heights (ft) During the Incident

Wave Period During Incidents 2002-2012

Wave Period (seconds)

Problem:

- *High waves crashing over a swimmer's head every 3-5 seconds
- *Currents more likely with higher waves: preventing a safe return to shore and pushing the swimmer into deeper water

Like swimming in a washing machine!!!

Rip Currents

Classic/Sandbar type Rip Currents
Outlet-type rip currents

What is a rip current?

- •A narrow jet of water moving swiftly away from shore, roughly perpendicular to the shoreline.
- Visual Clues:
 - Muddy/choppy water
 - •Break in the incoming waves

Classic Rip Current Examples

Classic Rip Currents

- Water piles up unevenly along the shoreline
 - Onshore Winds/Waves
 - Higher Wave Heights
 - Gentle Sloping Beach
 - Sandbars
 - River mouths

Onshore Winds: Estimating Wave Direction

- Onshore wind flow generates waves moving towards shore
- Longer fetch (distance across lake) + Stronger winds for a long duration=bigger waves
- Bigger waves = more water piling up onshore
- Leads to rip currents on favorable beaches

People at beach: Nice day, warm and humid air

Current incidents happen when winds (and hence waves) are onshore. 96% of current related incidents on the Great Lakes occur with onshore winds/waves.

Structural currents are most common with waves at a more oblique (not exactly perpendicular) angles to shore. Rip currents are more likely with waves being perpendicular to shore.

Wave Direction (Relative to Shore)

*60-90 Degrees is perpendicular to the shoreline-best for strong rip currents in the sandbars

*30-59 Degrees is when the longshore current is the strongest, which would lead to stronger structural currents near breakwalls or smaller and more numerous rip currents in sandbars.

*o to 29 degrees would also result in stronger structural currents and more numerous rip currents in sandbars

Total Channel Current and Rip Current Incidents - 2002-2012

Cold frontal passage

Classic Rip Currents

- Water piles up unevenly along the shoreline
 - Onshore Winds/Waves
 - Higher Wave Heights
 - Gentle Sloping Beach
 - Sandbars
 - River mouths

Classic Rip Currents: Intermediate Beach Type

Intermediate Beach States: Classic Rip Current Development

Classic Rip Currents: Intermediate Beach Type

- outer bar is quite permanent and only affected / moved by the strongest of storms (very large waves)
- second middle bar is also fairly stationary and is only moved by large waves from moderate storms
- inner bar is the most mobile and can vary quite a bit, <u>our biggest</u> <u>unknown in the forecast process</u>

Sandbar Structure

Muskegon State Park

Sandbars along the

US-2 Mackinac, MI

- Sandbars along the shore
- River outlets

Classic Rip Currents

Rhythmic Bar and Trough State

Rip current System on Lake MI

Figure 3. Coastal aerial photographs of two adjacent sections of Lake Michigan shoreline along Big Sable Point. The photo on the left shows a long linear, three bar system, while the photo on the right, taken only a few seconds later, as the aircraft progressed, shows a complex rip channel system.

[From Meadows et al, 2011]

Grand Marais/Grand Sable Dunes: Lake Superior

River mouths or outlets + Sandbars

Miner's Beach: River Mouth + Sandbars

River Outlet: Miller Rd Park Avon Lake, OH

Ludington, MI Sable River Mouth

Rip Currents: Sandbars and River Mouths

Swim Parallel to Shore to escape!

Longshore Currents

Longshore Currents: Develop as waves intersect the shoreline at an angle

Longshore Currents

- In strong North or South flow in Western Lower MI, longshore currents occur.
- These currents will exert a force on you making it difficult to remain in front of your spot on the beach. The current will push you down the beach over time.
- Children are especially susceptible to these currents in between the 1st and 2nd sand bars.
- To get out of swim directly back to the beach.

Incoming wind and wave direction

Structural Currents

Structural Currents

- A rip current that forms near a shoreline structure
- Develops as the longshore current intersects a breakwall or peninsula

Survivor Quote: Rescued near the breakwall

- Holland State Park, August 3, 2011
 - "I was trying to swim parallel to shore because I knew I was in a rip current...but it wasn't working! The current was there too."
 - "I originally wasn't swimming near the breakwall, I was swimming quite a ways down the beach. I didn't notice how close I had drifted to it"

Sandbar Structure

Muskegon State Park near north breakwall

Problems:

- Longshore Current pushes victim into breakwall
- 2) Longshore current keeps victim near breakwall
- 3) Structural current pushes victims away from shore
- 4) Water becomes deeper as swimmer moves outward
- 5) Waves pounding over head, larger at the end of the breakwall
- 6) Water outlet at the end of the breakwall contributes to the flow moving lakeward

Middle Bay: North of Presque Isle

Middle Bay Structural Current

Exceptions to the Rule

When high waves are absent...

Dangerous Currents can still be present even under low-wave height scenarios!

- There are a fairly large number of incidents [around 30%] that occur during low wave height scenarios
- Only 24% were not influenced by high waves, river mouths, or shoreline structures

The 24%...

- Could be a function of the limitations of the database
 - Observations used for these sites could have been >50 miles away
 - May not account for tstorms kicking up localized waves
- Seiches

July 4, 2013, Warren Dunes

- Large storm moved through in AM
- Later in the afternoon, waves 2-3 ft
- 7 adults drowned in a 5 hr period along the Warren Dunes shoreline
- Seiche motion: water sloshing back and forth from the storms influence on the water sfc
- Acts similar to low tide on the ocean [enhances rip currents]
- Strong storm could have modified the sandbars

Why Lake Michigan?

Factors contributing to the most drowning fatalities and rescues of all the Great Lakes

Most Lake MI Beaches...

Popularity + favorable conditions/Locations

Conclusions

- High Waves likely as culpable as currents for drowning fatalities
- Structural Currents (+high waves) cause the most drowning fatalities on the Great Lakes, especially Lake Michigan
 - No escape route!
- Rip Currents happen [typically during high waves] in areas near river outflow and on gently sloped beaches with complex sandbars
 - Swim Parallel to shore to escape!
 - Watch out for a-typical conditions: (strong thunderstorms over the lake leading to seiche-like motions)
- Longshore currents not individually responsible for deaths, but can drag swimmers towards shoreline structures!
 - Escape: Swim towards shore

Safety Recommendations

- 1) Check the NWS forecast! Outlooks, statements, etc to prepare for high risk days ahead of time!
- 2)Keep people away from shoreline structures!
 - Ocean studies suggest at least 100 feet away from structures, though new studies with Great Lakes currents will likely provide a more accurate measurement
- 3) Keep people out of high wave situations if wading/general swimming (no flotation device/Surf Boards, etc)
 - 3 to 5 ft or higher for adults (NWS High Swim Risk)
 - 2 to 4 ft smaller children/very inexperienced swimmers (NWS Moderate Swim Risk)
 - Dangerous rip current development more likely at wave heights in the 3-4 ft range and higher

Questions?

Contact:

Megan Dodson@noaa.gov National Weather Service, Marquette MI 906-475-5212

References

- Bowen, A.J., 1969: Rip currents, 1: Theoretical Investigations. Journal of Geophysical Research, 74, 5468-5478.
- Bowen, A.J., and D.L. Inman., 1969: Rip currents, 2: Laboratory and field observations. Journal of Geophysical Research, 74, 5479-5490
- COMET, 2011: Rip Currents: Nearshore Fundamentals. [http://www.meted.ucar.edu/marine/ripcurrents/NSF/index.htm]
- Cook, D.O., 1970: The occurrence and geological work of rip currents off southern California. Marine Geology, 9, 173-186.
- Dalrymple, R.A., 1975: A mechanism for rip current generation on an open coast. Journal of Geophysical Research, 80, 3485-3487.
- Dalrymple, R.A., 1978: Rip currents and their causes. Proc. of the 16th International Conference of Coastal Engineering, Hamburg, American Society of Civil Engineers, 1414-1427.
- Engle, J., J. MacMahan, R.J. Thieke, D.M. Hanes, R.G. Dean., 2002: Formulation of a rip current predictive index using rescue data. *Proc. of the National Conference on Beach Preservation Technology*, Biloxi, MS. Florida Shore and Beach Preservation.
- Dodson, Guenther and Cooley: Great Lakes Current Incident Database, 2012. Contact NWS Marquette for more information
- Google, 2011: Google Maps. [Available online at http://www.googlemaps.com]
- Guenther, D., 2003: Rip current case study 3, 4 July 2003. Marquette Michigan National Weather Service Office Report.
- Hite, M.P., 1925: The Undertow. Science, 62, 31-33.
- Hydrometeorological Prediction Center, 2011: Hydrometeorological Prediction Center's Surface Analysis Archive. [Available online at http://www.hpc.ncep.noaa.gov/html/sfc_archive.shtml]
- Hydrometeorological Prediction Center, 2011: The Daily Weather Map. [Available online athttp://www.hpc.ncep.noaa.gov/dailywxmap/]
- Lascody, R.L., 1998: East Central Florida rip current program. National Weather Digest, 22(2), 25-30.
- Lushine, J.B., 1991: A study of rip current drownings and related weather factors. National Weather Digest, 16, 13-19.
- Meadows, G., H. Purcell, D. Guenther, L. Meadows, R.E. Kinnunen, and G. Clark, 2011: Rip Currents in the Great Lakes: An Unfortunate Truth. Rip Currents: Beach Safety, Physical Oceanography, and Wave Modeling, S. Leatherman and J. Fletemeyer, Eds., CRC Press, 199-214.
- McKenzie, R., 1958: Rip current systems. Journal of Geology, 66, 103-113.
- Munk, W.H., 1949: The solitary wave theory and its application to surf problems. Ann. N.Y. Acad. Sci., 51, 376-424.
- Nicholls, C.P.L., 1936: Rip Tides and How To Avoid Their Perils. Calif. Beaches Assoc., vol. 1 No. 9, 12.
- Shepard, F.P., 1936: Undertow, rip tide or rip current. Science, 84, 181-182.
- Shepard, F.P., K.O. Emery, and E.C Lafond., 1941: Rip Currents: A process of geological importance. Journal of Geology, 49, 338-369.
- Shepard, F.P., D.L. Inman., 1950: Nearshore circulation. Proc. of the 1st Conference on Coastal Engineering, Berkeley, CA, Council on Wave Research, 50-59.
- Short, A.D., 1985: Rip current type, spacing and persistence, Narrabeen Beach, Australia. *Marine Geology*, **65**, 47-71.
- Sonu, C.J., 1972: Field observations of nearshore circulation and meandering currents. Journal of Geophysical Research, 77, 3232-3247.
- Tang, E. and R.A. Dalrymple., 1989: Rip currents, nearshore circulation, and wave groups. In Nearshore Sediment Transport, R.J. Seymour, editor, New York, NY, Pelenum Press, 205-230.
- Wood, W.L., and G.A. Meadows., 1975: Unsteadiness in longshore currents. Geophysical Research Letters, Vol 2, No 11.
- Wright, L.D. and Short, A.D., 1984: Morphodynamic variability of the surf zones and beaches: A synthesis. Marine Geology, 56, 93-118.